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Abstract
Data depth is a statistical analysis method that assigns a
numeric value to a point based on its centrality relative to a
data set. Examples include the half-space depth (also known
as Tukey depth), convex-hull peeling depth and L1 depth.
Data depth has significant potential as a data analysis
tool. The lack of efficient computational tools for depth
based analysis of large high-dimensional data sets, however,
prevents it from being in widespread use.

We provide an experimental evaluation of several exist-
ing depth measures on different types of data sets, recognize
problems with the existing measures and suggest modifica-
tions. Specifically, we show how the L1 depth contours are
not indicative of shape and suggest a PCA-based scaling
that handles this problem; we demonstrate how most exist-
ing depth measures are unable to cope with multimodal data
sets and how the newly suggested proximity graph depth
addresses this issue; and we explore how depth measures
perform when the underlying distribution is not elliptic.

Our experimental tool is of independent interest: it

is an interactive software tool for the generation of data

sets and visualization of the performance of multiple depth

measures. The tool uses a hierarchical render-pipeline to

allow for diverse data sets and fine control of the visual

result. With this tool, new ideas in the field of data depth

can be evaluated visually and quickly, allowing researchers

to assess and adjust current depth functions.

1 Introduction

Over the last decade, statisticians have developed the
concept of data depth as a method of multivariate data
analysis that is an attractive alternative to classical
statistics [47, 36, 35]. In this era, massive data sets are
the norm, whether the discipline is financial markets,
human biology, molecular biology or sociology. Data
depth provides the ability to analyze, quantify and vi-
sualize these data sets without making prior assump-
tions about the probability distribution from which they
come.

Proposed data depth metrics are inherently geomet-
ric, with a numeric value assigned to each data point
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that represents its centrality within the given data set.
The depth median, the point of maximal depth, is the
depth based estimator for the center of the data set.
Depth contours can be used to visualize and quantify
the data (see, e.g. [36]).

Data depth remains a relatively new field. A number
of data depth measures have been proposed, analyzed,
and, in some cases, coded, and new data depth measures
continue to be proposed. Examples include convex-hull
peeling depth [13, 4], half-space depth [21, 56], simplicial
depth [34], regression depth [44, 48] and L1 depth [57].
Despite all of the theoretical analysis and individual
experiments, there is no conclusive evidence as to which
depth measure should be applied to which data sets.
One key problem is that several data depth measures
which perform beautifully in two dimensions quickly
become impractical as the dimensionality increases.
Others that can be effectively computed in higher
dimensions are not statistically significant and produce
output that can be misleading.

The goal of this work has been to develop Depth
Explorer as an experimental platform for analysis and
visualization both of random data sets and of pre-
existing data sets using multiple different data depth
measures. In particular, Depth Explorer includes
implementations of standard data depth measures such
as half-space depth, convex hull peeling depth, and L1

depth. It also includes implementations of the newer
class of proximity graph data depth measures [42, 43]
such as Delaunay depth, Gabriel Graph depth, and β-
skeleton depth. Depth Explorer allows the user to
analyze and visualize a data set using each of these
measures. More importantly, however, the Depth
Explorer experimental platform allows the comparison
of depth measures. In particular, our testing of L1 depth
demonstrated the poor results that L1 depth generates
on certain types of data set. And yet L1 depth has
been one of the few data depth metrics known to be
computable in time that is linear in dimension, rather
than exponential. We have developed an enhanced
version of L1 depth that we call L1 scaling depth that
retains the computational efficiency of L1 depth but
produces much better output.

The paper reports not only on the development,
availability, and features of the Depth Explorer



Sandbox but also on the results of the experiments we
have performed using this platform. Section 2 provides
background information on the data depth concept, in-
cluding applications and examples of depth functions.
Section 3 provides technical information about Depth
Explorer. Sections 4, 5 and 6 present analysis of data
sets and depth measures using Depth Explorer and
Section 7 describes future work.

2 Data Depth

A data depth measures how deep (or central) a given
point x ∈ Rd is relative to F , a probability distribution
in Rd, or relative to a given data cloud.

Sections 2.1 and 2.2) introduce general principles
of data depth irrespective of the particular data depth
functions chosen . Definitions of four types of data
depth functions, with different features and computa-
tional complexities, are presented in Section 2.3).

2.1 General Concepts
The following concepts apply to the data depth method-
olgy and distinguish it from other statistical methods.

• Non-parametric methodology: Scientific mea-
surements can be viewed as sample points drawn
from some unknown probability distribution, where
the analysis of the measurements involves compu-
tation of quantitative characteristics of the proba-
bility distribution (estimators), based on the data
set. If the underlying distribution is known (for ex-
ample normal distribution, log-normal distribution,
Cauchy, etc.), the characteristics of the data can be
computed using methods from classical statistics.
However, in most real life experiments the underly-
ing distribution is not known. The concept of data
depth requires no assumption about the underlying
distribution and data is analyzed according to the
relative position of the data points.

• Center-outward ordering of points: The data
depth concept allows the creation of a multivari-
ate analog to the univariate statistical analysis
tool of rank statistics. Rank statistics is based
on the ordering of one-dimensional observations,
where the order reflects extremeness, contiguity,
variability or the effect of external contamination
and provides a parameter estimation method [4]. If
S = {X1, . . . Xn} is a sample of observations in R1

then the order statistics is defined as {X[1], . . . X[n]}
where X[1] ≤ X[2] . . . ≤ X[n].1 In higher dimensions
the order of multivariate data is not well defined,

1An alternative ranking order is from the outside inward,
where the deepest point equals the median.

and several ordering methods were suggested (e.g.
[4]). The data depth concept provides a method of
extending order statistics to any dimension by or-
dering the points according to their depth values.

• Application to multivariate (high-
dimensional) data sets: The concept of
data depth is defined with respect to points in
Euclidean space in any dimension, thus enabling
the derivation of multivariate distributional char-
acteristics of a data set. The methodology enables
the exploration of high dimensional data sets using
simple two-dimensional graphs that are easy to
visualize and interpret, and using quantitative
estimators.

• Robustness: In the statistical analysis of
datasets, observations that deviate from the main
part of the data (outliers) can have an undesirable
influence on the analysis of the data. Many depth
functions are “robust against the possibility of one
or several unannounced outliers that may occur in
the data and yield reasonable results even if sev-
eral unannounced outliers occur in the data” [46].
For example, “by adding k bad data points to a
data-set one can corrupt at most the k-outermost
(half-space) depth contours while the ones inside
must still reflect the shape of the good data” [12].

2.2 Depth Contours, Median and Mode

The median is a depth based estimator for the
center of a data set. The median of a set S under some
depth measure D : S → R is the set of points M such
that ∀p ∈ M , D(p) ≥ D(q) ∀q ∈ S. This definition
supports the possibility that several points will tie for
the deepest depth. The use of a single point or group
of points as the median relies on the assumption of
unimodality that is common in depth measures. Depth
Explorer highlights the median points, visualizing the
center of a data set.

The mode of a set is the most common value [59].
We use the term mode flexibly and refer to a bimodal
(or multimodal) distribution or point set as one having
two (or more) local maxima. The multiple maxima can
be created, for example, from overlaying two different
unimodal distributions. Often clustering algorithms are
used to detect the points associated with each mode
of the data set. This association, however, does not
necessarily attribute a data point to the center of the
distribution where it originated. For example, points
located between two centers and far from each could be
assigned to either of the two clusters.

Depth contours [55] are nested regions of increas-



Figure 1: 50% deepest points highlighted for different distributions calculated using Half-space Depth. All distributions

contain 500 points.

ing depth and serve as a topological map of the data.
Let DF (x), x ∈ Rd, be the value of a given depth func-
tion for point x with respect to a probability distribution
F . The region enclosed by the contour of depth
t is the set RF (t) = {x ∈ Rd : DF (x) ≥ t}. The α cen-
tral region, Cα (0 ≤ α ≤ 1) is, for well behaved dis-
tributions, the region enclosed by the contour of depth
tα Cα = RF (tα), where P{x ∈ Rd : DF (x) ≤ tα} = α
[36]. Well-behaved depth functions produce depth con-
tours that are affinely equivariant, nested, connected
and compact [61]. Contours have applications in visu-
alization and quantification of data sets.

In Depth Explorer highlighting the 100α% deep-
est points visualizes the α central region. See, e.g., Fig-
ure 1.

If the underlying distribution is elliptic then the
convex hull containing the α% deepest points is a sim-
plified sample estimate of the boundary of the contour
[35]. However, in such a case the resulting contour may
also contain shallower data points, that are not the α%
deepest points. In real life data sets usually the under-
lying probability distributions is not known, but if the
data set is unimodal and convex then it is reasonable
to assume that the underlying probability distribution
is elliptic.

As a method of comparing the performance of
a variety of depth measures, Depth Explorer can
display the convex hulls enclosing the 20%, . . . 100%
deepest points under each of these measures, visualizing
the type of contour produced by each measure. See
Figure 2.

2.3 Depth Measures
We present four types of depth functions, with different
features and computational complexities, that are all
implemented in the Depth Explorer Sandbox. The
convex-hull peeling depth is one of the early depth mea-
sures studied by the computational geometry commu-

nity, but it lacks many statistical properties. Half-space
depth is probably the best-known depth measures in the
computational literature and has attractive statistical
properties. The L1 depth does not possess many desir-
able statistical properties, but the simplicity of its com-
putation makes it useful for certain application of data
depth. The newly suggested proximity depth was devel-
oped as a depth measure that is efficient to compute in
high dimensions.

2.4 Convex-Hull Peeling Depth

Definition 2.1. The convex-hull peeling depth
[13, 4] of a point Xk with respect to a data set S =
{X1, · · ·Xn} in Rd is the level of the convex layer to
which Xk belongs. The level of the convex layer is de-
fined as follows: the points on the outer convex hull of S
are designated level one and the points on the kth level
are the points on the convex hull of the set S after the
points on all previous levels were removed (see Figure
2(a)).

Convex-hull peeling depth is appealing because of the
relative simplicity of its computation. However it lacks
distributional properties and is not robust in the pres-
ence of outliers. The convex-hull peeling layers can be
computed in the plane in optimal Θ(n log n) time using
Chazelle’s deletions-only dynamic convex-hull algorithm
[8] and in higher dimensions using iterative applications
of any convex-hull algorithm (the complexity of com-
puting the convex hull for a set of n points in Rd once is
O(n log n+nb

d+1
2 c) for even d [41] and O(n log n+nb

d
2 c)

for odd d [9] and it can be applied as many as O(n) times
to compute the entire set of peeling layers). The ver-
tices of all convex layers can be computed in O(n2−γ)
time for any constant γ < 2/(bd/2c2 + 1) [6].



(a) Convex Hull Peeling Depth

(b) Halfspace Depth

(c) L1 Depth

(d) Delaunay-Based Proximity Depth

Figure 2: 20%, 40%, 60%, 80% and 100% contours for a data

set consisting of 500 points, normally distributed, width

scaled by 5. Note that the L1 depth contours appear

more round that is warranted by the distribution, while

the Delaunay-Based Proximity Depth contours are the most

elongated.

2.5 Half-space Depth

Definition 2.2. The half-space depth [21, 56] (in
the literature sometimes called location depth or Tukey
depth) of a point x relative to a set of points S =
{X1, ..., Xn} is the minimum number of points of S lying
in any closed half-space passing through x (see Figure
2(b)).

The half-space depth has many attractive statistical
properties [61, 12]. However, its computation is expo-
nential in dimension. The half-space depth of a single
point in R2 can be computed in O(n log n) time [52],
matching the lower bound [2]. The set of half-space
depth contours can be computed in the plane in op-
timal Θ(n2) time [38] (expanding upon ideas in [11]),
or using other methods [52, 25, 29], including compu-
tation of the depth contours in Rd using parallel ar-
rangement construction [17]. Theoretical and practical

algorithms for computing or approximating the deep-
est contour relative to the data set (also known as the
Tukey median) in two and higher dimensions exist for
some time [52, 49, 51, 53, 58, 37, 30, 1], culminating
in an O(n log n) expected time randomized optimal al-
gorithm, which can be extended to any fixed higher di-
mension d, yielding an O(nd−1) expected time algorithm
[7]. The problem of computing the half-space depth is
NP-hard for unbounded dimension [3].

2.6 The L1 Depth

Definition 2.3. The L1 depth (L1D) [57] of a point
x with respect to a data set S = {X1, · · ·Xn} in Rd is
one minus the average of the unit vectors from x to all
observations in S:
L1D(S, x) = 1 − ‖e(x)‖, where ei(x) = x−Xi

‖x−Xi‖ , e(x) =Pn
i=1 ηiei(x)P

j ηj
. ηi is a weight assigned to observation Xi

(and is 1 if all observations are unique), and ‖x − Xi‖
is the Euclidean distance between x and Xi (see Figure
2(c)).

Intuitively, the L1 median of a cloud of points in Rn

is the point that minimizes the sum of the Euclidean
distances to all points in the cloud. The L1 depth
of a point can be summarized by the question, “How
much does the cloud need to be skewed before this
point becomes the L1 median?”. The L1 depth ranges
between 0 and 1. It is fast and easy to compute in any
dimension, contributing to its appeal for study of large
high-dimensional data sets. The L1 depth is non-zero
outside the convex hull of the data set and therefore
can be used to measure within-cluster and between-
cluster distance (see Section 7.1). However, it lacks
many statistical properties.

2.7 Proximity Depth
For any proximity graph the proximity graph depth
is defined using a point’s minimum path length along
graph edges to the convex hull of the data set S.

Definition 2.4. The [proximity graph] depth of
a point x relative to a set S = {X1 . . . Xn} is the
minimum number of edges in the [proximity graph] of
S that must be traversed in order to travel from x to
any point on the convex hull of S (see Figure 3).

Proximity graphs are graphs in which points close to
each other by some definition of closeness are connected
[24]. We concentrate our analysis on the Delaunay
triangulation [16] and β-skeletons [28] which are a
parameterized family of proximity graphs, which include
as a special case the Gabriel graph and the relative
neighborhood graph. We denote by δ(p, q) the Euclidean
distance between points p and q.



Figure 3: Exploring a proximity depth calculation. The

edge-distance from each data point to a convex-hull point is

illustrated using highlighted trees. Two normal clouds with

250 points separated horizontally by 6 standard deviations.

Definition 2.5. The Delaunay triangulation (DT)
of a d-dimensional point set S is the simplicial decom-
position of the convex hull of S such that the d-sphere
defined by the points of every simplex in the decomposi-
tion contains no point r ∈ S [16].

This decomposition is the dual of the Voronoi diagram
and is unique for every set of points [14].

Definition 2.6. The β skeleton of a point set S in
Rd is the set of edges joining β-neighbors.
Points p and q are lune-based β-neighbors for β ≥ 1,
iff the lune defined by the intersection of the spheres
centered at (1− β

2 )p + β
2 q and (1− β

2 )q + β
2 p, each with

radius β
2 δ(p, q), contains no point r ∈ S.

Points p and q are circle-based β-neighbors for β ≥
1, iff the lune defined by the union of the two spheres of
radius β

2 δ(p, q) contains no point r ∈ S.
Points p and q are β-neighbors for β < 1, iff the lune
defined by the intersection of the two sphere of radius
β
2 δ(pq) which contain p and q in their boundary contains
no point r ∈ S (for β < 1 the lune-based and circle-based
neighbors are identical).

For β > 1 the lune-based β-skeletons are planar
and monotonic with respect to β: Gβ1(S) ⊂ Gβ2(S), for
β1 < β2. The Gabriel graph (GG) [18] is the lune-based
1-skeleton while the relative neighborhood graph (RNG)
[54] is the lune-based 2-skeleton. The circle-based β-
skeletons for β > 1, are not necessarily planar and
have a reverse monotonic relation with respect to β:
Gβ1(S) ⊂ Gβ2(S), for β1 > β2.

For β < 1, as β becomes smaller, the β skeleton
tends towards the complete graph.

Overall Complexity The depths of all points in a
proximity graph can be determined in linear time in the

number of edges in the graph by using a breadth-first
search (BFS) of the graph, beginning at every point on
the convex hull of S (Figure 3). Assignment of all depths
of a point set is accomplished by (1) Computation of the
proximity graph; (2) Location of all convex hull points;
and (3) Breadth-first search of the proximity graph.

In two dimensions there are optimal O(n log n) time
algorithms to compute the DT [16], the circle-based β-
skeletons for β ≥ 1, and the lune-based β-skeleton for
1 ≤ β ≤ 2 [28, 33, 23]. The lune-based β-skeletons for
β > 2 and the β-skeletons for β < 1 can be computed in
optimal O(n2) time [28, 23]. Points on the convex hull
can be determined in O(n log n) time [40], for an overall
time requirement of O(n log n) for the DT and O(n2) or
O(n log n) for the β-skeleton.

In dimensions higher than 2, the DT can be cal-
culated in O(nd

d
2 e) time [15]. The β-skeletons require

checking n points for interiority on n2 lunes, which re-
quires a distance calculation for a total of O(dn3) time.
More efficient algorithms for specific graphs like the GG
or RNG or for 3-dimensional space are known [24]. The
set of points on the convex hull of the set can be found in
O(mn) time, where m is the number of extreme points
[39]. Breadth-first search then requires linear time in
the size of the proximity graph. Clearly, the time com-
plexity in higher dimensions is dominated by the com-
putation of the proximity graph itself. Assignment of
all depths, then, has a total complexity of O(nd

d
2 e) time

for Delaunay depth and O(dn3) time for the β-skeleton
depths. The exponential dependence on dimension for
calculating Delaunay depth makes it impractical for use
in high dimensions.

3 The Depth Explorer Statistical Sandbox

Depth Explorer is an interactive software tool for
the generation of data sets and visualization of the
performance of multiple depth measures. The tool is
aimed for use by statisticians, to visually and quickly
evaluate new ideas in the field of depth based statistics,
allowing researchers to assess and adjust current depth
functions. It was designed to be simple to use. The tool
uses a hierarchical render-pipeline to allow for diverse
data sets and fine control of the visual result. The
Depth Explorer source, executable for Mac OS X and
documentation is publicly available and can be found in
[22].

3.1 Scene Generation and the Render Tree
Depth Explorer enables automatic generation of data
sets and transformation or composition of existing data
sets. For each data set, Depth Explorer can quickly
visualize the behavior of the depth measure on the data.
Data sets are defined using a hierarchical representation



of the scene (the render-tree) in an XML file. Clicking
a toolbar button switches to “live” view and renders
the scene to the screen. The user can then switch
back into XML editor mode to adjust the scene and
then re-render. The changes are almost instantly
re-rendered into the window, allowing for interactive
experimentation. Generated PDF files can be saved to
the filesystem.

Data generation, transformations and visualizations
are specified hierarchically using XML tags in the render
tree, see Figure 4. The tree is rendered starting from
the leaf nodes and moving up. Each node is a C++
module that, given the output of its children nodes,
modifies or appends the data, then passes it to its
parent. Ultimately, the root node, called the canvas
node describes the dimensions and scale of the PDF
output file and renders its childrens’ data onto the PDF
document. The leaf nodes are data sources, either
CSV files with a data set, or a random cloud generator
with a set of points. Depth Explorer can currently
create Gaussian clouds with any number of points with
standard deviation 1, as well as uniformly distributed
clouds on the range (−1,−1) to (1, 1).

Non-leaf nodes modify data or add visualizations.
Depth Explorer supports affine transformation nodes
that can scale, rotate or translate nodes below them.
With affine transformations and any number of ran-
domly generated clouds, a broad spectrum of data sets
can be generated to test statistical methods.

Visualizations include the display of the α% con-
tour by highlighting the α% deepest points. If the set
is dense enough this serves as a good visual approx-
imation to the α/100 central region, see, e.g., Figure
1. Depth Explorer displays the convex hulls enclos-
ing the 20%, 40%, 60%, 80% and 100% deepest points,
to visualize a subset of the depth contours, under the
assumption that the underlying distribution is elliptic
and the convex hull containing the α% deepest points
is a simplified sample estimate of the boundary of the
contour, see Figure 2. Note that the resulting contour
may contain shallower data points, that are not the α%
deepest points.

As Depth Explorer uses a modular, tree-based
renderer, it is trivial to combine visualizations, even
at different points in the hierarchy. By viewing two
visualizations on the same data, it is possible to compare
depth measures or convey two concepts in one image.
Figure 3 illustrates how Depth Explorer can help
visualize a powerful concept, such as computation of
the proximity depth.

3.2 Depth Explorer Construction
The Depth Explorer program is currently divided into

two sections. The libdepthengine library contains all of
the code to load a render-tree into memory and render
it to PDF. This library is written entirely in portable
C++. It uses PDFlib from GmbH Software [19] to
generate PDF files and it uses Apple’s implementation
of BLAS [5] and LAPACK [31] to do matrix math
and compute eigenvalues. PDFlib is open source and
very portable, and thus does not introduce platform
dependency. The BLAS and LAPACK routines used are
standard and thus implemented in all implementations
of BLAS and LAPACK, and do not introduce platform
dependence as well.

The Depth Explorer GUI links against lib-
depthengine and is responsible for editing XML data,
viewing rendered scenes, saving rendered scenes as
PDF files and printing. The GUI was developed with
Objective-C using the Apple’s Cocoa [10] application
frameworks. Although the implementation is platform
dependent, the amount of code is small and the com-
plexity is very low compared to libdepthengine. For ex-
ample, while the Cocoa frameworks provide support for
XML parsing, parsing in Depth Explorer is done in-
side libdepthengine in portable C++.

3.3 Performance and Interactivity
Depth Explorer does not render instantaneously even
a relatively easy depth measure like L1. Nonetheless,
almost all scenes are rendered within seconds, not min-
utes, allowing for interactive feedback. On a 1.5 Giga-
hertz Powerbook G4, rendering most scenes commonly
requires 2-5 seconds. Rendering time is heavily depen-
dent on the processing that is done in each node. If no
depth-based visualizations are included in the render
tree, than even the most complicated scene with thou-
sands of data points will render almost instantly. When
depth calculations are involved, computation time is
slower.

To render an L1 50% depth contour on a cloud of
1000 points takes about two seconds. To render the
same contour on 10,000 points requires about 5 seconds.
While the scale-up should be linear according to the
algorithm, the software is tuned to handle large amounts
of data, thus the slowdown is only apparent in very large
datasets or with very slow computations.

Thus Depth Explorer is not a “sit and wait” pro-
gram: almost all scenes can be rendered in a matter of
seconds, not minutes. Conversely, Depth Explorer is
not a real-time program: it is not fast enough to give dy-
namic feedback as the user changes parameters to the
render tree nodes. Thus a render button is required.
As more (slower) depth measures2 and complex visu-

2Depth Explorer’s current implementation of Halfspace Depth
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<canvas width='6' height='6' margins='.1' minrange='6'>

! <pcabag color='1,0,0' size='.6'>

! ! <transform angle='13'>

! ! ! <transform xtrans='2' ytrans='1'>

! ! ! ! <cloud type='uniform' points='300'/>

! ! ! </transform>

! ! ! <bag type='l1' color='0,1,0' size='.5'>!

! ! ! ! <transform xscale='.2' yscale='2' angle='45'>

! ! ! ! ! <cloud type='normal' points='500'/>

! ! ! ! </transform>

! ! ! </bag>

! ! </transform>

! </pcabag>

</canvas>

PCA-scaling L1 Contour
Red, 60%

Affine Transform:
Rotate 13 Degrees

Affine Transform:
Translate By (2,1)

Depth Contour
L1, Green, 50% 

Affine Transform:
Scale by (.2,2)

Rotate by 45 Degrees

Cloud of Points
Uniform Unit Square

Quantity 300 

Cloud of Points
Normal Distribution

Standard Deviation 1
Quantity 500 

XML Representation of Render Tree Internal Representation of Render Tree Final Rendered Output

Figure 4: The Render tree form XML to Final Scene. This scene is defined by two source clouds, a uniform square with

300 points and a normal cloud with 500 points. The square is translated and rotated while the normal cloud is scaled

and rotated. Both clouds are rotated 13 degrees together. Two depth contours are calculated, one L1 50% contour on the

normal cloud and one PCA-Based L1 Scaling 60% contour on the entire scene.

alizations are supported, it seems unlikely that Depth
Explorer will ever become fully realtime. See Section
7 for a discussion of speed improvements.

4 Analysis of the L1 Depth Measure

The L1 Depth measure has many statisticians very
excited as the computation time is very low. With a
fast depth measure available, suddenly the concept of
data depth is applicable to many new and more complex
problems. L1 Depth is hoped to be “good enough”, that
is, its speed will make up for its sub-par results. Still,
as L1 Depth is a new and relatively untested depth
measure, it is still unknown just how much quality of
result is compromised for speed.

To answer this question, we analyzed the L1 depth
function on unimodal normally distributed data sets
that were scaled or rotated. It is desirable that depth
contours will be representative of the shape of the
of data. However, as we demonstrated visually (see
Figure 2) L1 depth contours do not exhibit this desirable
property, while all other tested depth measure do. Since
the contour is supposed to be indicative of the shape of
the cloud, the L1 depth measure is not as useful as many
other depth measures.

Using Depth Explorer to visualize how L1 Depth
performs on various data sets, we discovered that, under
the L1 depth, a point whose distance to the median
point is small is more likely to have higher depth than

and Beta-Based Proximity depth are naive and thus have O(n3)
time complexity. This limits these particular depth calculations

to about 500 points. This will be improved in a upcoming minor
revision.

the same point in other depth measures. Consequently,
L1 depth contours tend to be more circular than desired.

As L1 depth is most successful on hyper-spherical
data, by performing an affine transformations for non-
spherical data we can create a shape that approaches a
hypersphere and compute the L1 depth on this scaled
cloud. The depth values for the scaled cloud are then
used for the corresponding points in the original cloud.

This works very well when data sets are scaled
along an axis, but many times, a data set is elongated
or compressed in directions not parallel to an axis.
Thus, Principal Component Analysis (PCA) is used
to determine the major directions of the data cloud.
Scaling along these vectors produces an approximation
of a hyperspherical cloud for many data sets (see Figure
5).

Definition 4.1. The k-PCA-based L1 depth of a point
x with respect to a data set S = {X1, ...Xn} in Rd

is the L1 depth of pca(x) with respect to a data set
pca(S) = {pca(X1), . . . pca(Xn)}. Let v1, v2, . . . vn be
the eigenvectors for S, computed using PCA analysis.
Then pca : Rd → Rd is defined as follows: (i) rotate
S so that the first k primary vectors coincide with the
axes and (ii) For each of the primary k axes, project the
points of S on the axis and scale the projected set such
that the .8 and .2 quantiles go to 1 and -1 respectively.
(as a result of this transformation 60% of the data fits
between −1 and 1 for each of the primary k axis).

The PCA-based L1 depth of a point x with respect to
a data set S in Rd is the d-PCA-based L1 depth. We
assume that data sets are centrally symmetric relative
to each of the axis and therefore always use the d-PCA-



based L1 depth.
PCA-scaling-L1 depth removes much of the afore-

mentioned bias towards points closer to the median
when assigning depth values. We used Depth Ex-
plorer to confirm this visually, see, e.g. Figure 5. Note
that the final contour generated approximates the shape
of the cloud.

PCA-scaling does not, address the tendency for L1

depth contours to be rounded in square data clouds
and is limited to handling data clouds that are roughly
convex (see Section 6).

5 Multimodality and Depth Measures

5.1 Multimodal Distribution
Depth Explorer was tested on multimodal data sets
and the behavior of depth functions on these data sets
was analyzed. The tested depth functions, convex-hull
peeling depth, half-space depth and L1 depth, were not
well suited for analysis of multimodal data sets (see
Figure 8). However, the newly suggested proximity
depth was found to handle these data sets well, see
Figure 8 and 9.

5.2 Median and Seeds
The median, as it was defined in Section 2, is not a
good estimator in multimodal situations, because points
that are not of maximum depth in the set may in fact
be local maxima, local peaks in depth (see Figure 6).
Estimating a set using a simple median ignored local
maxima that represent several modes. The proximity
graph depth allows the definition of an estimator that
handles modes of a data set:

Definition 5.1. A seed of a point set S under some
depth measure D : S → R is a connected set of points
T ⊂ S st ∀p, q ∈ T,D(p) = D(q) and ∀r ∈ S, r /∈ T
adjacent to some u ∈ T,D(r) < D(u).

Unfortunately, points of different clusters are not neces-
sarily distinguished by the proximity graph depth mea-
sures. Distributions that are too close behave as a single
mode; those separated by large empty regions appear
unimodal as the dearth of points between the clusters
prevents paths from traveling inward quickly from the
convex hull.

Quantitative analysis
Tests performed on Depth Explorer verify the abilitiy of
the proximity graph seeds to discern unimodality and
bimodality quantitatively. Analysis of both bimodal
and unimodal planar point sets was performed using
a separate program that computed the seeds. Bimodal
sets in two dimensions (containing x and y coordinates)
were created by combining two 200-point normal distri-
bution sets, each with x and y standard deviations of

(a) Convex Hull Peeling
Depth

(b) Halfspace Depth

Figure 6: Highlighted deepest point approximates the depth

median. 500 points, Y-axis compressed 70%, rotated 10

degrees.

10. They began centered at the same x-coordinate, but
were then separated in increments of 10. The unimodal
sets began with an x-coordinate standard deviation of
10, which was gradually increased to stretch the uni-
modal set in the x-direction. We plotted the standard
deviation of the x-values of the points of local maxima
against the x-coordinate range of the set. When the
bimodal sets are close, they behave very similarly to
the unimodal sets, but as they pull apart their seeds
separate, illustrating the bimodal behavior (Figures 7
and 9). This behavior is similar for each of the proxim-
ity graph depth measures.

Algorithms Finding seeds requires a recursive
search to locate all points associated with the seed
and to locate all points in S that are connected to
that seed. The basic process to compute the seeds is
that of comparing the depth of point p to the depth
of its neighbors in the proximity graph and checking
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Figure 5: How Affine Scaling Improves the L1 Depth Results

Figure 7: Computation of seeds using the Delaunay depth

function for unimodal and bimodal point sets. For every

x-value X the unimodal point set was constructed to have

comparable width to the width of the bimodal point set,

whose separation is X. The standard deviation of the x-

values of the local maxima were computed. The results

support our assumption, that in a bimodal point set we

expect to find wider gaps between the points of local

maxima and therefore larger standard deviation compared

to unimodal point sets.

whether it is deeper or of the same depth as its neighbors
(compare(p)).

One method of computation searches the list of
points to locate those that are deeper or of the same
depth as their neighbor. In this case, every connected
grouping of points must be checked and there can be
O(n) such groupings. The compare(p) process is called
recursively for each point p in a grouping exactly once
and obtains a yes/no answer for that point before
returning. Because compare(p) eliminates points of
lower depth than p, it is called at most n times. Each
call iterates through some portion of p’s adjacency
list. Each edge in the graph represents two entries
in adjacency lists, and is considered exactly twice,
producing an algorithm with a running time that is
linear in the size of the proximity graph. The size of the
graph is linear in two dimensions and up to quadratic
in higher dimensions. The process does not add to the
overall complexity, because construction of the graphs
requires at least as much time.

Additional improvements allow the number of seeds
to be decreased further (see [42, 43]). For example, only
those seeds with CH-value great than 2 and over half
of the maximum (CH-point seeds). The CH-value of a
seed T is the number of convex hull vertices that can be
reached by a path originating at T for which the depths
of points visited along the path is strictly decreasing.

5.3 Proximity Graph Depth Function Family
We compared the family β-skeleton depth functions
with the DT depth visually, using the Depth Explorer
(see Figure 9), and quantitatively, with a separate
code written in C++, using the LEDA library [32].
For the quantitative analysis 300 normally distributed
data sets with 400 points each were generated and
the average number of seeds produced was calculated.



(a) Convex Hull Peeling Depth

(b) Halfspace Depth

(c) Delaunay Based Proximity Depth

Figure 8: Deepest 30% of the points of a bimodal distri-

bution highlighted with different depth measures. The tra-

ditional depth measures’ depth is biased towards the space

between distributions, while proximity depth measures rec-

ognize bimodality. The distribution is two normal clouds

with 250 points separated horizontally by 6 standard devia-

tions.

(a) Delaunay-Based Proximity Depth

(b) Gabriel-Based Proximity Depth

(c) β-Based Proximity Depth (β = .970)

Figure 9: Highlighted seeds for a bimodal data set comput-

ing with three proximity depth measures. The distribution

is two normal clouds with 250 points separated horizontally

by 6 standard deviations.



The average number of CH-point seeds was plotted
against the average deepest depth attained by the
point set (Figure 10). The locations of the points
indicate that the values β = .962 and β = .970 best
approximate the performance of Delaunay Depth for
these two characteristics. The weakness of the GG (1-
skeleton) is also visible, as it finds many more seeds in
a unimodal data set than the other graphs.

Figure 10: Performance comparison of proximity-depth

schemes for 300 normally distributed unimodal point sets

with 400 points. A low average number of seeds and a high

average number of deepest depth values is desirable. The

.962-skeleton and .970-skeleton perform most similarly to

the DT The weakness of the GG (1-skeleton) is also visible

here, as it finds many more seeds than the other graphs.

6 Non-Elliptic Underlying Distributions

We tested the behavior of depth functions on point sets
that did not follow an elliptic distribution. It is desirable
that the depth contours will be indicative of the shape
of the data cloud. However, for most depth functions,
this does not hold. In fact, the four desirable properties
of depth functions, as suggested by statisticians as a tool
to analyze and evaluate depth functions [34, 60, 61, 20]
assume that the underlying distribution is unimodal and
that the ordering of the points is center-outward.

When the cloud is not round, as in the square
uniform plot from Figure 1(a), the depth contours are
still round, when they should be more rectangular to
match the shape of the data.

If the data points are not in a convex position,
but follow a banana-like shape, as in Figures 11(a) and
11(b), none of the depth functions capture this shape,
not even the proximity graph depth functions which are
not convex. We are currently working on a version of
the proximity graph depth that will handle this type of
distribution.

(a) Halfspace Depth

(b) Delaunay-Based Proximity Depth

Figure 11: 30% deepest points highlighted where the

underlying data set is distributed in non-convex position.

Traditional depth measures bias towards the inside center of

the curve, while proximity-based depth measures have much

less bias, and can better represent shape.

7 Future Work

Depth Explorer has great potential as a tool for
evaluation and analysis of depth functions, and the work
presented here just scratches the surface. Our goal is to
continue exploration of depth functions using this tool
and to make it publicly available and more user-friendly,
such that other researchers, especially in the statistics
community, can make use of it.

7.1 Depth Explorer for Analysis of Real Life
Data
Application of the data-depth concept to real-life data
have been suggested by statisticians for a while. Many
of them are two-dimensional graphs that visualize sta-
tistical properties of high-dimensional data sets. The
flexible architecture of Depth Explorer can be aug-
mented to compute and display these graphs

• The multivariate nature of data depth yields simple
two dimensional graphs for high dimensional data
sets, that can be easily visualized and interpreted
[36]. Examples include scale curves as a measure of
scale/dispression, tracking how the depth contours



expand; shrinkage plots and fan plots as a measure
of kurtosis, the overall spread relative to the spread
in the tail; and depth vs. depth (DD) plot to com-
pare variation between two sample distributions.

• The bagplot [50] 3 is a visual tool based on the
half-space depth function that is indicative of the
shape of a two dimensional data set. It includes
a bag, the contour containing the n/2 observations
with largest depth. Magnifying the bag by a factor
3 yields the fence, where observations outside the
fence are flagged as outliers. The bagplot is an
affine invariant and robust visualization tools for
the location, spread, correlation, skewness, and
tails of a two dimensional data set.

• The robust nature of the data depth concept makes
it appropriate to serve as a robust classification
and cluster analysis tool. Rousseeuw et al. [52]
suggest using the volumes of the depth contours
that contain α of the points of each cluster (for
a constant α) to classify a data point to a given
cluster or to partition a given set into a number of
clusters. Jörnsten, Vardi and Zhang [27] introduced
the Relative Data Depth, ReD, based on the L1

depth as a validation tool for selecting the number
of clusters and identifying outliers, in conjunction
with an exact K-median algorithm. The concept
was tested on several real-life data sets [26].

7.2 Technical Enhancements
On the technical side, work will concentrate on the
following directions:

• Depth Explorer is currently limited to two di-
mensional visualizations and data. Since many of
the computations extend trivially to three or more
dimensions, support for two dimensional visualiza-
tions on higher dimensional data is under devel-
opment. Later extending the software to support
three dimensional visualizations will be a priority,
however, a three dimensional interface will require
careful consideration and much development. This
will be a major focus in the ongoing development
of Depth Explorer.

• Massive improvements to the editor interface in-
cluding direct integration with online help and au-
tomatic highlighting of XML errors. A live preview
of the data distribution will be added, eliminating
the current back and forth nature of constructing
a scene.

3The Sunburst plot [36] is a similar visual tool.

• The process to add a new data generator, modifier
or visualizer is currently very simple. Steps need to
be taken to further simplify this process and fully
document it. The goal is to make it nearly trivial
to expand the functionality of Depth Explorer
within the render tree framework.

• Additional visualization types, For example: color-
ing points for clustering visualizations according to
membership; shading regions of depth rather than
outlinining or highlighting them; points displaying
their numerical depth value as they are moused
over.

• The current tool is single-threaded and cannot
take advantage of the recent push for dual core
processors on the desktop. Making the render
process parallelizable will decrease render time,
especially as the size of the render increases.

• Support of additional platforms other than Mac OS
X including Microsoft Windows. Depth explorer
has been developed with portability in mind, how-
ever, as development resources are limited, devel-
opment and testing on additional platforms may be
a secondary priority for the immediate future.
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[37] J. Matoušek. Computing the center of planar point
sets. DIMACS Series in Disc. Math. and Theoretical
Comp. Sci., 6:221–230, 1991.

[38] K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellarés,
D. Souvaine, I. Streinu, and A. Struyf. Efficient
computation of location depth contours by methods
of combinatorial geometry. Statistics and Computing,
13(2):153–162, 2003.

[39] T. Ottmann, S. Schuierer, and S. Soundaralakshmi.
Enumerating extreme points in higher dimensions.
In Symposium on Theoretical Aspects of Computer
Science, pages 562–570, 1995.

[40] F. Preparata and S. Hong. Convex hulls of finite sets of
points in two and three dimensions. Commun. ACM,
20(2):87–93, 1977.

[41] F. P. Preparata and M. I. Shamos. Computational ge-
ometry. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1985. An introduction.

[42] E. Rafalin, K. Seyboth, and D. Souvaine. Path length
in proximity graphs as a data depth measure. Tufts CS
Technical Report 2005-5, Tufts University, Nov. 2005.
Abstract appeared in Proceedings of the 15th Annual
Fall Workshop on Computational Geometry, UPenn,
2005, pages 11-12.

[43] E. Rafalin, K. Seyboth, and D. Souvaine. Proximity
graph depth, depth contours, and a new multimodal
median, 2005. submitted for publication 22nd Annual



ACM Symposium on Computational Geometry.
[44] P. Rousseeuw and M. Hubert. Depth in an arrange-

ment of hyperplanes. Discrete & Computational Ge-
ometry, 22:167–176, 1999.

[45] P. Rousseeuw and I. Ruts. Bivariate location depth.
Applied Statistics-Journal of the Royal Statistical Soci-
ety Series C, 45(4):516–526, 1996.

[46] P. J. Rousseeuw. Introduction to positive-breakdown
methods. In Robust inference, volume 15 of Handbook
of Statist., pages 101–121. North-Holland, Amsterdam,
1997.

[47] P. J. Rousseeuw. Introduction to positive-breakdown
methods. In J. E. Goodman and J. O’Rourke, editors,
Handbook of discrete and computational geometry, Dis-
crete Mathematics and its Applications (Boca Raton),
pages xviii+1539. Chapman & Hall/CRC, Boca Raton,
FL, second edition, 2004.

[48] P. J. Rousseeuw and M. Hubert. Regression depth.
J. Amer. Statist. Assoc., 94:388–433 (with discussion),
1999.

[49] P. J. Rousseeuw and I. Ruts. Constructing the bivari-
ate tukey median. Statistica Sinica, 8:827–839, 1998.

[50] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The bag-
plot: A bivariate boxplot. The American Statistician,
53:382–387, 1999.

[51] P. J. Rousseeuw and A. Struyf. Computing loca-
tion depth and regression depth in higher dimensions.
Statistics and Computing, 8:193–203, 1998.

[52] I. Ruts and P. J. Rousseeuw. Computing depth
contours of bivariate point clouds. Comp. Stat. and
Data Analysis, 23:153–168, 1996.

[53] A. Struyf and P. Rousseeuw. High-dimensional com-
putation of the deepest location. Manuscript, Dept.
of Mathematics and Computer Science, University of
Antwerp, Belgium, 1999.

[54] G. Toussaint. The relative neighborhood graph of
a finite planar set. Pattern Recognition, 12:261–268,
1980.

[55] J. Tukey. Mathematics and the picturing of data. In
Proceedings of the International Congress of Mathe-
matics, pages 523–531, 1974.

[56] J. W. Tukey. Mathematics and the picturing of data.
In Proc. of the Int. Cong. of Math. (Vancouver, B. C.,
1974), Vol. 2, pages 523–531. Canad. Math. Congress,
Montreal, Que., 1975.

[57] Y. Vardi and C.-H. Zhang. The multivariate L1-
median and associated data depth. Proc. Nat. Acad.
Sci. USA., 97:1423–1426, 2000.

[58] K. Verbarg. Approximate center points in dense point
sets. Inform. Process. Lett., 61(5):271–278, 1997.

[59] E. W. Weisstein. Mode. From MathWorld,
http://mathworld.wolfram.com/Mode.html.

[60] Y. Zuo and R. Serfling. General notions of statistical
depth function. Ann. Statist., 28(2):461–482, 2000.

[61] Y. Zuo and R. Serfling. Structural properties and
convergence results for contours of sample statistical
depth functions. Ann. Statist., 28(2):483–499, 2000.


